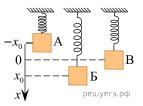
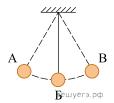


**1.** Тело двигалось вдоль оси Ox под действием силы  $\vec{F}$ . График зависимости проекции силы  $F_x$  на ось Ox от координаты x тела представлен на рисунке. На участках (O; a), (a; b), (b; c) сила совершила работу  $A_{0a}$ ,  $A_{ab}$ ,  $A_{bc}$  соответственно. Для этих работ справедливо соотношение:

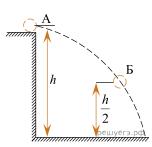



1) 
$$A_{0a} < A_{ab} < A_{bc}$$
 2)  $A_{0a} < A_{bc} < A_{ab}$  3)  $A_{0a} = A_{bc} < A_{ab}$   
4)  $A_{0a} = A_{ab} < A_{bc}$  5)  $A_{bc} < A_{ab} < A_{0a}$ 


- **2.** Модуль скорости движения  $v_1$  первого тела массой  $m_1$  в два раза больше модуля скорости движения  $v_2$  второго тела массой  $m_2$ . Если кинетические энергии этих тел равны  $(E_{\mathbf{k}1}=E_{\mathbf{k}2})$ , то отношение массы второго тела к массе первого тела равно:
  - 1)  $\frac{1}{2}$  2) 1 3)  $\sqrt{2}$  4) 2
- **3.** На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой  $x_0$ . Если в положении B полная механическая энергия маятника W=8,0 Дж, то в положении B она равна:



- 1) 0 Дж 2) 2,0 Дж
- 3) 4,0 Дж
- 4) 6,0 Дж
- 5) 8,0 Дж
- **4.** Масса  $m_1$  первого тела в два раза больше массы  $m_2$  второго тела. Если модули скоростей этих тел равны ( $\upsilon_1=\upsilon_2$ ), то отношение кинетической энергии первого тела к кинетической энергии второго тела  $\frac{E_{k1}}{E_{k2}}$  равно:
  - 1) 1,0 2)  $\sqrt{2}$  3) 2,0 4) 4,0 5
- **5.** На рисунке изображены три положения груза пружинного маятника, совершающего свободные незатухающие колебания с амплитудой  $x_0$ . Если в положении B полная механическая энергия маятника W=4,0 Дж, то в положении B она равна:




- 1) 0 Дж 2) 2,0 Дж
  - 2,0 Дж 3) 4,0 Дж
- 4) 6,0 Дж
- 5) 8,0 Дж
- **6.** Абсолютное удлинение  $\Delta l_1$  первой пружины в два раза больше абсолютного удлинения  $\Delta l_2$  второй пружины. Если потенциальные энергии упругой деформации этих пружин равны ( $E_{\Pi 1}=E_{\Pi 2}$ ), то отношение жесткости второй пружины к жесткости первой пружины  $\frac{k_2}{k_1}$  равно:
  - 1) 1,0
    - 2) \sqrt{2} 3) 1,7
- 4
- 4) 2,0 5) 4,0
- 7. На рисунке изображен математический маятник, совершающего свободные незатухающие колебания между точками A и B. Если в положении A полная механическая энергия маятника W=12,0 Дж, то в положении E она равна:



- 1) 0 Дж
- 2) 6,0 Дж
- 3) 12,0 Дж
- 4) 18,0 Дж
- 5) 24,0 Дж

**8.** С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке Б полная механическая энергия камня W=12,0 Дж, то в точке A после броска она равна:

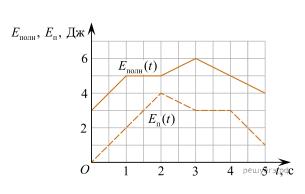


- 1) 0 Дж
  - 2) 6,0 Дж
- 3) 8,0 Дж
- 4) 12,0 Дж
- 5) 24,0 Дж

9. Масса  $m_1$  первого тела в два раза больше массы  $m_2$  второго тела. Если кинетические энергии этих тел равны  $(E_{k1} = E_{k2})$ , то отношение модуля скорости второго тела к модулю скорости первого тела  $\frac{v_2}{v_1}$  равно:

- 2) 1,0 3)  $\sqrt{2}$  4) 2,0
- 5) 4,0

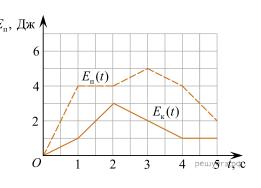
**10.** С некоторой высоты h в горизонтальном направлении бросили камень, траектория полёта которого показана штриховой линией (см. рис.). Если в точке Б полная механическая энергия камня W = 8,0 Дж, то в точке A после броска она равна:




- 1) 0 Дж
- 2) 4,0 Дж
- 3) 8,0 Дж
- 4) 12,0 Дж
- 5) 16,0 Дж

11. Модуль скорости  $v_1$  первого тела в два раза больше модуля скорости движения  $v_2$  второго тела. Если массы этих тел равны  $(m_1 = m_2)$ , то отношение кинетической энергии первого тела к кинетической энергии второго тела равно:

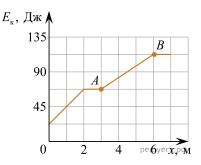
- 1) 1
  - 2)  $\sqrt{2}$
- 3) 2
- 4) 4
- 5)8


12. На рисунке сплошной линией показан график зависимости полной механической энергии  $E_{\rm полн}$  тела от времени t, штриховой линией — гразависимости фик потенциальной энергии  $E_{\Pi}$  тела от времени t. Кинетическая энергия  $E_{\kappa}$ 

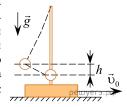


тела оставалась неизменной в течение промежутка времени:

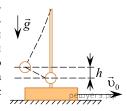
- 1) (0; 1) c
- 2) (1; 2) c
- 3) (2; 3) c
- 4) (3; 4) c
- 5) (4; 5) c


13. На рисунке сплошной линией показан график зависимости кинетической энергии  $E_{\rm K}$  тела от времени t, штриховой линией — график зависимости потенциальной энергии  $E_n$  тела от времени t. Полная механическая энергия  $E_{\rm полн}$  тела оставалась неизмен-




ной в течение промежутка времени:

- 1) (0; 1) c 2) (1; 2) c
- 3) (2; 3) c
- 4)(3;4)c
- 5) (4; 5) c
- **14.** Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид  $x(t)=A+Bt+Ct^2$ , где A=2,0 м, B=1,0  $\frac{\mathrm{M}}{\mathrm{c}}$ , C=1,0  $\frac{\mathrm{M}}{\mathrm{c}^2}$ , то кинетическая энергия  $E_{\mathrm{K}}$  материальной точки в момент времени t=3,0 с равна ... Дж.
- **15.** Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид  $x(t)=A+Bt+Ct^2$ , где A=2,0 м, B=2,0  $\frac{\mathrm{M}}{\mathrm{c}}$ , C=1,0  $\frac{\mathrm{M}}{\mathrm{c}^2}$ , то кинетическая энергия  $E_{\mathrm{K}}$  материальной точки в момент времени t=2,0 с равна ... Дж.
- **16.** Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м кинетическая энергия тела  $E_{\rm K}=30$  Дж, то первоначальная высота H равна ... м.
- 17. Тело свободно падает без начальной скорости с высоты H=30 м. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на  $\Delta E_{\Pi}=3,0$  Дж, то его масса m равна ... г.
- **18.** Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H. Если на высоте h=20 м потенциальная энергия тела по сравнению с первоначальной уменьшилась на  $_{\Pi}=65$  Дж, то высота H равна ... м.
- **19.** Тело массой m=0,25 кг свободно падает без начальной скорости с высоты H=30 м. Тело обладает кинетической энергией  $_{\rm K}=30$  Дж на высоте h, равной ... м.
- **20.** Камень бросили вертикально вверх с поверхности Земли со скоростью, модуль которой  $\upsilon=20~\frac{\rm M}{\rm c}$ . Кинетическая энергия камня равна его потенциальной на высоте h, равной ... м.
- **21.** Тело свободно падает без начальной скорости с высоты h=17 м над поверхностью Земли. Если на высоте  $h_1=2,0$  м кинетическая энергия тела  $E_{\rm K}=1,8$  Дж, то масса m тела равна ...  ${\bf r}$ .
- **22.** Тело массой m=100 г свободно падает без начальной скорости с высоты h над поверхностью Земли. Если на высоте  $h_1=6,0$  м кинетическая энергия тела  $E_{\rm K}=12$  Дж, то высота h равна ... м.
- **23.** Тело свободно падает без начальной скорости с высоты  $h=20\,\mathrm{m}$  над поверхностью Земли. Если масса тела  $m=200\,\mathrm{r}$ , то на высоте  $h_1=8,0\,\mathrm{m}$  кинетическая энергия  $E_\mathrm{K}$  тела равна ... Дж.


**24.** На рисунке приведён график зависимости кинетической энергии  $E_{\kappa}$  тела, движущегося вдоль оси Ox, от координаты x. На участке AB модуль результирующей сил, приложенных к телу, равен ... Н.



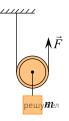
**25.** На гладкой горизонтальной поверхности установлен штатив массой M=800 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=200 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой  $\upsilon_0=0.95$  м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.



**26.** На гладкой горизонтальной поверхности установлен штатив массой M=900 г, к которому на длинной нерастяжимой нити подвешен шарик массой m=100 г, находящийся в состоянии равновесия (см. рис.). Штативу ударом сообщили горизонтальную скорость, модуль которой  $\upsilon_0=1,0$  м/с. Чему равна максимальная высота h, на которую поднимется шарик после удара? Ответ приведите в миллиметрах.

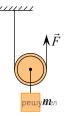


**27.** Два маленьких шарика массами  $m_1=16$  г и  $m_2=8$  г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha=60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись,  $h_{\rm max}=6,0$  см, то длина l нити равна ... см.


**28.** Два маленьких шарика массами  $m_1=24$  г и  $m_2=12$  г подвешены на невесомых нерастяжимых нитях одинаковой длины l=63 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha=60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота  $h_{\rm max}$ , на которую они поднялись, равна ... см.

**29.** На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с .

**30.** Два маленьких шарика массами  $m_1=18$  г и  $m_2=9,0$  г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha=60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись  $h_{\rm max}=8,0$  см, то длина l нити равна ... см.

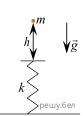

**31.** Два маленьких шарика массами  $m_1=32$  г и  $m_2=16$  г подвешены на невесомых нерастяжимых нитях одинаковой длины l=99 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha=60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое, то максимальная высота  $h_{\rm max}$  на которую они поднялись равна ... **см**.

- 32. Два маленьких шарика массами  $m_1=30$  г и  $m_2=15$  г подвешены на невесомых нерастяжимых нитях одинаковой длины l так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол  $\alpha=60^\circ$ , а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота, на которую они поднялись  $h_{\rm max}=10,0$  см, то длина l нити равна ... см.
- **33.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=43,6 г. Пуля массой m=2,4 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с.
- **34.** На невесомой нерастяжимой нити длиной l=1,28 м висит небольшой шар массой M=58 г. Пуля массой m=4 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с .
- **35.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=52 г. Пуля массой m=8 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с .
- **36.** На невесомой нерастяжимой нити длиной l=72 см висит небольшой шар массой M=34 г. Пуля массой m=3 г, летящая горизонтально со скоростью  $\vec{v}_0$ , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости  $v_0$  пули, равном ...м/с .
- 37. Груз массой m=0,80 кг, подвешенный на длинной невесомой нерастяжимой нити, отклонили так, что нить заняла горизонтальное положение, и отпустили без начальной скорости. В момент времени, когда нить составляла угол  $\alpha=60^\circ$  с вертикалью, модуль силы  $F_{\rm H}$  натяжения нити был равен ... Н.
- **38.** Груз массой m=9,0 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока  $\eta=75\%$ , то модуль силы F, приложенной к свободному концу верёвки, равен ... H.



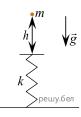
39.

Груз массой m=7,2 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока  $\eta=80$  %, то модуль силы F, приложенной к свободному концу верёвки, равен ... Н.



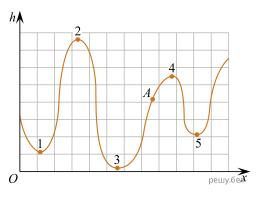

**40.** Воздух считается загрязнённым диоксидом серы, если в одном кубическом метре воздуха содержится больше чем  $N_0=1.9\cdot 10^{18}$  молекул диоксида серы. В одном килограмме диоксида серы находится  $N_1=9.4\cdot 10^{24}$ . Если в воздух попадёт m=10 кг диоксида серы, то максимальный объём V загрязнённого воздуха будет равен:

1) 
$$4.9 \cdot 10^5 \,\mathrm{m}^3$$
 2)  $1.8 \cdot 10^6 \,\mathrm{m}^3$  3)  $4.9 \cdot 10^6 \,\mathrm{m}^3$  4)  $1.8 \cdot 10^7 \,\mathrm{m}^3$  5)  $4.9 \cdot 10^7 \,\mathrm{m}^3$ 


- 41. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту  $\alpha=30^\circ$  с постоянной скоростью  $\vec{\upsilon}$ . Сила сопротивления движению электроскутера прямо пропорциональна его скорости:  $\vec{F}_c=-\beta\vec{\upsilon}$ , где  $\beta=1,25$   $\frac{\text{H}\cdot\text{c}}{\text{M}}$ . Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя  $\eta=85\%$ , то модуль скорости  $\upsilon$  движения электроскутера равен ...  $\frac{M}{c}$ .
- 42. Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=70 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|$ =200 пКл) шарик массой m=630 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- 43. Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=80 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|=500\,$  пКл) шарик массой  $m=380\,$  мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=19,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами  $E=250\,$  кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **44.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=20 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|$ =400\ пКл) шарик массой m=180 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=200 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **45.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=38 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|=400$  пКл) шарик массой m=100 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=19,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=100 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **46.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=40 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|=100\,$  пКл) шарик массой  $m=720\,$  мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=36,0\,$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами  $E=400\,$  кВ/м, то период T ударов шарика об одну из пластин равен ... мс.

- 47. Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=10 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ( $|q_0|=100$  пКл) шарик массой m=380 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет  $\eta=19,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=100 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **48.** Подъёмный кран равномерно поднимает железобетонную плиту массой m=3,0 т на высоту h=21 м за промежуток времени  $\Delta t=1,0$  мин. Если коэффициент полезного действия подъёмного крана  $\eta=80\%$ , то мощность P, развиваемая электродвигателем крана, равна ... кВт. Ответ записать в киловаттах и округлить до целых.
- **49.** Невесомая пружина жёсткостью k=200  $\frac{\rm H}{\rm M}$  закреплена вертикально на столе. К верхнему концу пружины прикреплена лёгкая горизонтальная пластинка. С высоты h=25 см (см. рис.) на пластинку без начальной скорости падает маленький шарик массой m=190 г и прилипает к ней. Если длина пружины в недеформированном состоянии  $l_0=30$  см, то в ходе колебаний пластинка с шариком будет подниматься относительно поверхности стола на максимальную высоту H, равную ... см.

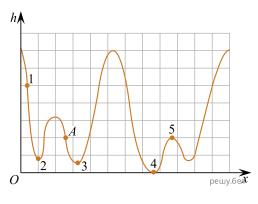



Ответ запишите в сантиметрах, округлив до целых.

- **50.** Подъёмный кран равномерно поднимает железобетонную плиту массой  $m=2,5\,$  т на высоту  $h=16\,$  м за промежуток времени  $\Delta t=1,5\,$  мин. Если мощность, развиваемая электродвигателем крана,  $P=6,0\,$  кВт, то коэффициент полезного действия  $\eta$  подъёмного крана равен ... %.
- **51.** Невесомая пружина жёсткостью  $k=200\,$  Н/м закреплена вертикально на столе. К верхнему концу пружины прикреплена лёгкая горизонтальная пластинка. С высоты  $h=30\,$ см (см. рис.) на пластинку без начальной скорости падает маленький шарик массой  $m=150\,$ г и прилипает к ней. Если длина пружины в недеформированном состоянии  $l_0=35\,$ см, то в ходе колебаний пластинка с шариком будет подниматься относительно поверхности стола на максимальную высоту H, равную ... см.



Ответ запишите в сантиметрах, округлив до целых.


52. Небольшое тело скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты х показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке Aпотенциальная энергия тела была в два раза больше его кинетической энергии, то точки, в которые тело не может переместиться точки A, обозначены цифрами:



1) 1 2) 2 3) 3 4) 4 5) 5

**53.** Автомобиль трогается с места и, двигаясь равноускорено и прямолинейно, проходит по горизонтальному участку шоссе путь  $s=20,0\,$  м за промежуток времени  $\Delta t=2,00\,$  с. Если масса автомобиля  $m=1,00\,$  т, то его кинетическая энергия  $E_{\bf k}$  в конце пути равна ... кДж.

- **54.** Плита массой m=120 кг была равномерно поднята с помощью подъемного механизма на высоту h=16,0 м за промежуток времени  $\Delta t=30,0$  с. Если коэффициент полезного действия 80%. то мощность, развиваемая двигателем, равна ... Вт.
- 55. Небольшое скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты х показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке Aпотенциальная энергия тела была в два раза меньше его кинетической энергии, то точки, в которые тело не может переместиться точки A, обозначены цифрами:



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **56.** Автомобиль трогается с места и, двигаясь равноускорено и прямолинейно, проходит по горизонтальному участку шоссе путь  $s=20,0\,$  м за промежуток времени  $\Delta t=2,00\,$  с. Если масса автомобиля  $m=1,54\,$  т, то его кинетическая энергия  $E_\kappa$  в конце пути равна ... кДж.
- 57. Плита массой m=134 кг была равномерно поднята с помощью подъёмного механизма на высоту h=18,0 м за промежуток времени  $\Delta t=39,0$  с. Если коэффициент полезного действия подъёмного механизма  $\eta=80,0$  %, то мощность P, развиваемая электродвигателем механизма, равна ... Вт. Ответ запишите в ваттах, округлив до целых.